“三电”实验课程教学探索与实践

徐伟，陈勇，艾卫清，吕庭，徐惠钢
（常熟理工学院 电气与自动化工程学院，江苏 常熟 215500）

摘要 “三电”实验课程是电气与自动化类专业重要的基础实践课程。该文在分析了目前“三电”实验课程教学存在的不足基础上，以常熟理工学院电气与自动化工程学院自动化专业“三电”实验课程教学为例，从实验内容安排、实验过程管理、实验教学模式和实验成绩评定方式等几方面展开教学探索与实践。采用难度递进式和整体-单元结构形式安排实验内容，增加综合性、设计性和自主实验项目。加强实验过程管理与考核，明确管理流程和考核内容。采用自主开放实验模式，增加任务实验项目。采用多方面综合评定方式，提升成绩评定的公正性与合理性。教学实践表明，开展教学改革后明显提高教学质量管理，提升学生的实践能力。

关键词 “三电”实验；难度递进式；实验课程；过程性考核

中图分类号 G642;TP211 文献标志码 A doi:10.3969/j.issn.1672-4550.2019.03.026

Research and Practice of Three Electric Experimental Courses Teaching

XU Wei, CHEN Yong, AI Weiqing, LV Ting, and XU Huigang
(School of Electrical and Automation Engineering, Changshu Institute of Technology, Changshu 215500, China)

Abstract The "three electricity" experimental course is an important basic practice course for electrical and automation majors. Based on the analysis of the shortcomings for the current "three electricity" experimental course teaching, this paper takes the teaching of the "three electricity" experimental course of the automation major of School of Electrical and Automation Engineering, Changshu Institute of Technology as an example, from the experimental content arrangement, experimental process arrangement, experimental teaching exploration and practice in teaching methods and evaluation methods of experimental results. The experimental content is arranged in the form of difficulty progressive and overall unit structure, and comprehensive, design and independent experimental projects are added. The management and assessment of the experimental process is strengthened, and clarify the management process and assessment content. The self-selected experimental project was added by adopting an independent open experiment mode. Adopt a multi-faceted and rationality of performance evaluation. The teaching practice shows that after teaching reform, the quality of experimental teaching can be significantly improved and the students’ ability can be significantly improved.

Key words three electric experimental; difficulty progressive; experimental courses; process assessment

教学环节是电气与自动化类专业本科学习中不可缺少的一部分，它有利于提高学生的知识掌握能力和实践应用能力[1-2]。电气与自动化系统一般都会包含复杂的电子电路系统。因此，电子电路的综合分析能力是电气与自动化类专业学生必须具备的基础能力之一[3]。“三电”实验课程的电路、模拟电子技术及数字电子技术实验课程的总称，是电气自动化专业重要的学科基础课程，不仅能够促进学生对电路电子理论知识的掌握，而且能够锻炼学生的实践动手能力，为后续专业课程的学习打下良好的基础，最终达到培养学生解决自动化控制领域复杂工程问题能力的目的[4]。

因此，“三电”实验课程在电气与自动化类专业课程体系中应当占有十分重要位置。但是目前无论在实验设备、实验内容安排、实验学时及实验教学方法上，都存在明显不足。因此，开展自动化专业“三电”实验课程教学改革势在必行。本文以常熟理工学院电气与自动化工程学院自动化专业“三电”实验课程教学为例，从实验内容安排、实验过程管理、实验教学模式和实验成绩评定方式等几方面开展教学探索与实践。

收稿日期：2017-11-10；修回日期：2018-07-27
基金项目：教育部专业综合改革项目（ZG20191）；江苏高校品牌专业建设工程资助项目（PZY2015C2015）
作者简介：徐伟（1985-），男，硕士，实验师，主要从事电子技术实验教学方面的研究。
1 目前“三电”实验课程教学存在的不足

面对21世纪科技快速发展，信息社会不仅需要坚实的理论知识，而且需要先进的技术实践的手段。“三电”实验课程作为自动化专业重要的基础实践环节，其教学效果的好坏直接影响学生工程实践能力、工程素质和创新意识的培养[1]。但是目前的“三电”实验课程普遍存在以下5个缺点和不足。

1）理论实验课程标准不一。重视学生理论课程教学，忽视实验实践教学，导致学生实验动手能力、分析实际问题解决实际问题的能力方面普遍较差。理论课时与实验课时安排不够合理，实验课时太少，只够完成基础性验证试验，没时间开展提高性实验。

2）实验教学内容过于简单。只为了完成对于理论教学内容的实验验证，大部分都是相关电子电路理论或定律的验证，缺少综合性、设计性实验项目。

3）教学方法单一。学生只需要按实验要求完成既定实验项目就好，缺少自主实验部分，更缺乏创新型设计性实验内容。

4）实验课程考核办法需要进一步完善。仅用平时的实验成绩和平时参加实验的次数，缺乏公正性，成绩的可信度太低。

5）实验课程开放程度不够，学生自主学习能力薄弱，学习积极性差。由于受制于实验设备数量和实验设备设备及实验室数量有限等原因，开放实验开设比例不高，导致学生自主实验能力差，都依赖于教师指导。实验课前学生事先不做预习，只是按照老师要求进行操作，没能深入领会该实验验证知识点的真正内涵。由于理论课程可能难度较大，导致学生学习积极性差，不利于培养学生的创新能力与科学素质。

2 电气与自动化类专业“三电”实验课程教学实践

实验项目是“三电”实验课程的基本组成单元，每个实验项目都有特定的实验内容构成，且每个实验项目和实验内容之间其实都存在着一定的联系。如整体和部分的关系，或者难度递进关系等。但目前实验项目和实验内容的安排都是相互独立的，学生无法理解各个实验项目之间的关系，也就无法了解各个知识点之间的关联，只是为了完成实验而实验，造成实验教学效果差，难以实现课程教学目标。因此，如何根据知识点之间的联系，合理安排实验内容，通过更新实验项目设计理念，是达到巩固学生理论知识，提升学生动手能力的有效途径[2]。

2.1 调整实验内容

采用难度递进式和整体-单元结构形式展开，增加综合性、设计性和自主实验项目。

“三电”实验内容比较丰富，其中电路实验基础部分主要是基本电路定理和定理的验证，只通过正确搭建电路，正确使用电压表、电流表实现数据测量，并结合理论计算完成相关定理验证即可。但电路动态特性测试部分由于需要配合使用信号发生器、交流毫伏表和示波器等电子测量仪器，实验过程有一定难度。模拟电路部分主要是针对线性放大功能的电路研究，因为是小信号电路研究，相对容易受到外界干扰，对于实验测量数据的准确性带来巨大挑战。数字电路部分主要分成组合逻辑电路和时序电路实验部分[3][4]。数字电路实验由于接线多，生容易出错，导致无法获得正确实验结果。综上所述，“三电”实验实际实验有一定难度，部分实验前后关联性较强，而且实验过程也比较枯燥，因此可以尝试采用难度递进式和整体-单元结构式安排教学内容。

2.1.1 难度递进式实验内容安排

在实际教学过程中，根据学生的认知规律，应该从简单实验开始逐步加大难度，因此采用难度递进式实验安排，即首先安排基础性实验，教授基本实验技能；然后安排中等难度实验，验证电路基本工作原理和规律，加深对相关电路的认识；最终安排能力提高部分实验，重点考核学生的知识综合运用能力和自主实验能力。其教学环节示意如图1所示。
2.1.2 整体－单元结构实验内容安排

“三电”实验各个实验电路之间都具有一定的联系。综合运用各单元电路可以实现具有特定功能的综合电路。如果将各部分电路实验独立开来进行实验，那么学生将无法了解电路之间的联系和使用途径，因此，采用整体到局部再整体的实验内容安排方式，能够让学生更好地理解电路之间的关系，真正认识电路的作用，能够为后续应用打下坚实基础。下面以数电实验内容安排为例进行说明。首先给出以时钟电路为例的整体电路，然后再将其拆分成，组合逻辑电路、译码器、编码器、触发器和定时电路等单元电路分别进行实验，最终再将这些单元电路有机结合再现时钟这一整体电路。通过这种安排方式不仅能够提升实验效率，而且能有效激发学生学习兴趣。整体－单元结构实验教学内容安排示意图如图2所示。

2.2 加强实验过程管理与考核

现代教学管理应该注重过程管理与考核，不能只注重结果而忽略过程。应当加强实验过程的管理，对整个实验过程进行综合考核，并明确实验管理流程和实验各阶段的考核内容。通过构建贯穿整个实验过程的管理与考核模式，实现教学能力的提升。

2.2.1 实验过程管理

“三电”实验过程管理包括实验预习、实验操作和实验总结三个阶段。其流程如图3所示。

实验预习阶段需要完成：

1）明确实验目的，理解实验原理，了解实验步骤；
2）根据理论知识完成实验参数计算，以供后续比对；
3）分析实验电路，明确实验接线方案。实验操作阶段需要完成：
4）根据实验电路图在实验箱上正确连接电路；
2）验证电路的功能；
3）电路功能正确则记录实验数据，否则需排除故障后重新验证。实验总结阶段需要完成：
1）统计数据分析；
2）总结实验过程中出现的问题，说明问题的解决办法；
3）撰写实验报告。

图3 实验过程管理流程图

2.2.2 实验过程考核

实验过程考核分为实验前、实验中和实验后考核。实验前考核实验预习完整性，理论参数计算准确性和接线方案的合理性。

实验中考核：

1）实验质量（电路连接和布局的合理性）；
2）操作效率（实验操作熟练性和实验所用时间）；
3）实验数据（测试数据记录的规范性和数据处理的正确性，实验后考核实验报告的规范性、完整性与实验总结的深度）。

2.3 更新实验教学模式

现有实验运行模式普遍采用固定时间教师演示，学生跟着做的教学模式，整个实验过程指导教师疲于指导，导致实验过程管理考核质量下降，学生的自主实验能力也未得到提升。在实验过程中将实验分成必修实验和选修实验两种类型，必修实验是每位同学都必须完成的验证性实验项目，还是采用原有实验教学模式。自选实验项目尝试采用自主开放实验教学模式。开放实验指的是实验室对实验开放，在任何时间学生都可以选实验是开展实验，能够有效提升实验室的使用效率。自主实验是指学生从给定的实验题目中自主选择实验内容，或者按图实验题目，通过自主制定实验方案，自主开展实验验证研究。
完成实验报告的教学模式。

采用开放性主实验模式时，教师需要提供一定数量难度不同的实验项目，并明确具体实验任务和要求。每个实验项目都有基本任务和提高任务组成，基本任务每位同学都需要完成，可以使得每位同学的实验能力得到锻炼，而提高任务少数有能力的同学可以尝试完成，可以培养学生同学的探索精神和创新能力。实验项目评议与难度和实验任务具体完成情况挂钩。实验开展过程是以学生为主体，教师为辅助。如此，学生不仅能够培养学生学生主动学习能力，而完成后续专业课程的实验打下坚实的基础，同时也能有效减轻实验指导教师工作压力。

2.4 改革实验成绩评定方法

实验成绩需要根据必修实验成绩、选修实验成绩，仿真实验成绩和实验考试成绩等多方面综合评定。力争实现对学生的全方位考核，避免成绩评定的局限性，能够有效提升成绩评定的合理性和公正性。总成绩评定如表1所示。其中每个必修实验成绩由实验的预习、操作和报告三部分组成，其中预习占20%，操作占60%，实验报告占20%。必修实验成绩由多个成绩项平均计算。自选实验成绩由实验方案、实验过程和实验数据、实验故障分析与排除和实验报告五部分组成，每个部分各占20%。仿真实验成绩由仿真电路正确性测试结果两部分评定，各占50%。考试部分由理论分析设计、实验电路设计、电路搭建和实验结果四部分组成，每个部分各占25%。

| 表1 “三电”实验课程总成绩评定表 |
|------------------|---|---|---|---|
| 评定内容 | 必修 | 选修 | 仿真 | 实验考试 |
| 占比 | 40% | 20% | 10% | 30% |

3 结束语

本文通过在“电与自动化”专业“三电”实验课程的教学过程中，开展教学内容调整、实验教学过程管理与考核，实验教学模式的革新和实验成绩评定方式的改革等几个方面的研究与探索。进行教学改革后不仅能够激发学生学习兴趣，锻炼学生的实验动手能力，使学生养成良好的实验习惯而且能够显著提升学生的自主实验能力和提高实验教学质量。另外取得以下2个成效：1）电气与自动化工程学院自动化专业已经通过工程教育认证，电力电子技术实验教学环节是专家进校必查环环，在实验教学方面的改革尝试得到专家肯定；2）每年都有学生在电子设计竞赛中取得优异成绩。

参考文献

编辑：钟晓