一种基于卷积神经网络的快速车道检测算法

A Fast Lane Detection Algorithm Based on Convolutional Neural Network

  • 摘要: 车道线检测在辅助驾驶和自动驾驶中有着非常重要的作用和意义,它是保证辅助驾驶和自动驾驶行车安全的重要前提条件。目前,由于卷积神经网络(CNN)具备权值共享的特点,因此减少了训练参数,CNN可以自动学习并提取特征,在图像分割和识别等领域被广泛应用。该文利用车道检测的特点,将经典的CNN中的对称卷积核改进为非对称卷积核(AK-CNN)结构,进一步减少了CNN网络的计算量,使车道检测的速度得以进一步提高。

     

    Abstract: Lane line detection, an important prerequisite to ensure the safety of assistant driving and automatic driving, plays a very important role in assistant driving and automatic driving. At present, given the weight-sharing convolutional neural network (CNN) and the reduced training parameters, CNN can automatically learn and extract features, and can be widely used in the image segmentation and recognition and other fields. Based on the characteristics of lane detection, this paper improves the symmetric convolution kernel to the asymmetric kernel CNN (AK-CNN) structure, which further reduces the computation of CNN network and enhances the speed of lane detection.

     

/

返回文章
返回