面向远程实验的超融合平台设计与实现

Design and Implementation of HCI Platform for Remote Experiments

  • 摘要: 该文设计实现了一种基于超融合架构和虚拟专用网络技术的远程实验平台,以解决传统远程实验平台在资源分配、数据存储和网络稳定性等方面的问题。通过采用分布式计算、软件定义存储、高可用性集群和智能负载均衡等关键技术,显著提升了平台的可靠性和资源利用率。使用马尔可夫链对平台故障恢复能力进行建模,并通过M/G/1排队模型优化节点服务器的负载能力。实验结果表明,平台在数据存取延迟、故障恢复时间和并发处理能力方面较传统架构有显著提升,教学实践反馈良好,显示出较强的应用潜力。

     

    Abstract: This paper proposes a remote experiment platform based on hyper converged infrastructure and virtual private network technologies. The platform addresses limitations of traditional systems in resource allocation, data storage, and network stability. Key features include distributed computing, software-defined storage, high-availability clustering, and intelligent load balancing, which together improve reliability and resource efficiency. A Markov chain is used to model fault recovery, and the M/G/1 queuing model is applied to optimize node server load. Experimental results show reduced data access latency, shorter fault recovery time, and improved concurrency compared with conventional architectures. Teaching practice confirms the platform’s effectiveness and its potential for application in remote education.

     

/

返回文章
返回