一种跨编程语言的恶意代码检测实验设计

Experimental Design for Cross-Language Malicious Code Detection

  • 摘要: 为提升学生的创新对抗实践和研究能力,本文设计出一种基于语义增强抽象语法树(SEAST)的跨编程语言恶意代码检测实验方法。该实验旨在面向恶意代码检测分析的实际需要,通过构建SEAST保留代码的语义结构并消除非语义噪声,实现多语言代码的统一表征;同时结合多分支Softmax分类机制,解决数据分布差异和小样本语言过拟合问题。实验设计涵盖大规模数据集构建、消融实验、与先进模型的对比实验,以及未知语言检测等面向实践难点的验证实验。完善的实验流程让学生能够深入理解恶意代码检测的核心技术,掌握使用深度学习技术解决网络安全实际问题的实验方法,有助于提高学生的创新思维和实践能力。

     

    Abstract: To enhance students' practical and research abilities, this paper designs an experimental teaching case for cross-language malicious code detection based on Semantic Enhanced Abstract Syntax Tree (SEAST). The experiment aims to construct the SEAST to retain the semantic structure of the code while eliminating non-semantic noise, achieving a unified representation of cross-language. At the same time, it incorporates a multi-branch Softmax classification mechanism to address issues of data distribution differences and overfitting in small sample languages. The experimental design covers the construction of a large-scale dataset, ablation studies, comparison experiments with state-of-the-art models, and verification experiments for detecting unknown languages, all addressing practical challenges. The comprehensive experimental process allows students to gain a deep understanding of the core technologies in malicious code detection, master experimental methods using deep learning techniques to solve network security problems and helps foster students' innovative thinking and practical abilities.

     

/

返回文章
返回