基于GA-SVM的土力学参数与标准贯入击数反演

Inversion of Soil Mechanics Parameters and Standard Penetration Test Based on GA-SVM

  • 摘要: 由于地质条件的多样性和复杂性,岩土力学参数的获取耗时耗力且过程十分困难,而岩土力学参数对于岩土结构分析、建筑抗震结构测评起着至关重要的作用。该文基于昆明地区大量土工试验及岩土工程勘察报告提取4类岩土类型,并从中提取4个特征向量输入SVM分类器进行训练,建立起土体力学参数与标准贯入击数之间的映射关系。提出一种基于遗传算法优化SVM分类器的方法,应用于岩土力学参数与标准贯入击数之间的反演,并与粒子群算法(PSO)优化SVM分类器的实验结果进行对比。结果表明,基于GA-SVM的方法在岩土工程参数反演中速度很快,并具有较强的实用性和泛化能力。

     

    Abstract: Due to the diversity and complexity of geological conditions,the acquisition of geomechanical parameters is time-con-suming and labor-intensive and the process is very difficult. The geomechanical parameters play an important role in geotechnical anal-ysis and seismic evaluation of buildings. Based on a large number of geotechnical tests and geotechnical investigation reports in Kun-ming,this paper extracts four types of geotechnical types,and extracts four eigenvector input SVM classifiers for training,and estab-lishes the mapping relationship between soil mechanics parameters and standard penetrations. A method based on genetic algorithm to optimize SVM classifier is proposed. It is applied to the inversion between geomechanical parameters and standard penetration num-ber,and compared with the experimental results of particle swarm optimization(PSO)to optimization SVM classifier. The results show that the GA-SVM based method is very fast in geotechnical engineering parameter inversion and has strong practicability and general-ization ability.

     

/

返回文章
返回