求解两体问题数值方法的创新性研究

Innovative Research of Obrechkoff Method for the Numerical Solution of Orbital Problems

  • 摘要: 该文阐述了求解两体问题的线性对称多步数值方法——Obrechkoff法。N体问题是一个很难的问题,只有少数微分方程存在解析解,近似方法是解微分方程的主要手段,高精度的轨道问题需要长时间的数值积分。因此,选用线性对称多步方法,在其主结构上增加高阶微商,不仅有理想的精度和较好的稳定性,而且可以大大减少截断误差,尤其在很大程度上减小了误差系数。研究表明,该方法求解两体问题的数值解具有高精度、高效率及稳定性好的优点。

     

    Abstract: We focus on the new kind of P-stable Obrechkoff method for the numerical solution of orbital problemsHowever, only a few of these differential equations can be solved exactlyApproximate methods are the main means for solving, analyzing and understanding physics problemsThrough improving the Wangs method, we develop a new kind of P-stable four-step Obrechkoff method by adding the higher-order derivativesThis proposed method is very effective but has very high local truncation errorThe numerical experiments for the numerical solution of orbital problems has the advantage over the Wangs method in accuracy and efficiency

     

/

返回文章
返回